O Varroa destructor e suas implicações nas abelhas Apis melliferas

Varroa destructor and its implications for Apis melliferas bees

Autores

  • Athos Cardoso Pereira de Souza
  • Flávio Franklin Ferreira de Almeida
  • Rosilene Agra da Silva
  • Aline Carla de Medeiros
  • Jose Nunes de Oliveira Neto
  • Thyago Araujo Gurjao
  • Geovergue Rodrigues Medeiros
  • Daniel Santiago Pereira
  • Patricio Borges Maracaja
  • Nicolle Borba Maracaja Rodrigues Gomes Universidade do Waikato-Amilton –Nova Zelandia https://orcid.org/0009-0009-1580-5884

DOI:

https://doi.org/10.61223/coopex.v14i1.116

Palavras-chave:

Varroa, ácaro, acaricida, ectoparasita

Resumo

Com o passar dos anos, o franco desenvolvimento e evolução do sistema alimentar tem garantido o acesso à alimentação básica em todo o planeta e a apicultura tem exercido papel-chave neste processo. Por conta da polinização de plantações agrícolas e também do fornecimento de produtos derivados do mel, as abelhas têm sido cada vez mais estudadas na área de sistemas agroindustriais para que se garanta a sobrevivência e produtividade de suas colônias. Atualmente um dos principais desafios para garantir a saúde das colônias é o enfrentamento do ectoparasita Varroa destructor. Este ácaro tem sido o principal vilão para as abelhas melíferas ocidentais por conta de suas características parasitárias, seu ciclo de reprodução e principalmente por ser vetor de transmissão de diversas doenças. Os apicultores utilizam diversas técnicas e práticas para redução ou erradicação de ácaros, como métodos apícolas biotécnicas, acaricidas sintéticos e acaricidas orgânicos ou suaves, e novos desafios surgem de acordo com a abordagem escolhida para o tratamento. São frequentes os relatos de contaminação do mel, exposição das abelhas a acaricidas em doses subletais, evolução genética dos ácaros a determinados acaricidas, entre outras adversidades. A continuidade de estudos de campo e laboratoriais são determinantes para que as práticas dos apicultores quanto ao enfrentamento ao Varroa seja efetivo e não produza efeitos colaterais a longo ou a curto prazo.

Biografia do Autor

Athos Cardoso Pereira de Souza

ANDREO-MARTÍNEZ, P. et al. Science production of pesticide residues in honey research: A descriptive bibliometric study. Environmental Toxicology and Pharmacology, v. 79, p. 103413, 1 out. 2020.

BORBA, R. S. et al. Phenomic analysis of the honey bee pathogen-web and its dynamics on colony productivity, health and social immunity behaviors. PLOS ONE, v. 17, n. 1, p. e0263273, 1 jan. 2022.

DAISLEY, B. A. et al. Missing Microbes in Bees: How Systematic Depletion of Key Symbionts Erodes Immunity. Trends in Microbiology, v. 28, n. 12, p. 1010–1021, 1 dez. 2020.

DE GRAAF, D. C. et al. Heritability estimates of the novel trait ‘suppressed in ovo virus infection’ in honey bees (Apis mellifera). Scientific Reports 2020 10:1, v. 10, n. 1, p. 1–10, 31 ago. 2020.

DE, U.; FFCLRP, P.; ENTOMOLOGIA, A. O. E. M. Universidade de são paulo ffclrp – departamento de biologia programa de pós-graduaçao em entomologia “. 2009.

EL YAAGOUBI, M. et al. A review on Moroccan Thymus species: Traditional uses, essential oils chemical composition and biological effects. Journal of Ethnopharmacology, v. 278, p. 114205, 5 out. 2021.

ESCOBAR, A. et al. Thymol bioactivity: A review focusing on practical applications. Arabian Journal of Chemistry, v. 13, n. 12, p. 9243–9269, 1 dez. 2020.

GATES, M. C.; EARL, L.; ENTICOTT, G. Factors influencing the performance of voluntary farmer disease reporting in passive surveillance systems: A scoping review. Preventive Veterinary Medicine, v. 196, p. 105487, 1 nov. 2021.

HOPKINS, D. I.; KELLER, J. J. Honey Bee Diagnostics. Veterinary Clinics of North America: Food Animal Practice, v. 37, n. 3, p. 427–450, 1 nov. 2021.

KARIMI, P.; MALEKIFARD, F.; TAVASSOLI, M. Medicinal plant essential oils as promising Anti-Varroa agents: Oxidative/nitrosative screens. South African Journal of Botany, v. 148, p. 344–351, 1 ago. 2022.

KHAN, K. A. et al. Instrumental insemination: A nontraditional technique to produce superior quality honey bee (Apis mellifera) queens. Journal of King Saud University - Science, v. 34, n. 5, p. 102077, 1 jul. 2022.

KYLE, B.; LEE, K.; PERNAL, S. F. Epidemiology and Biosecurity for Veterinarians Working with Honey bees (Apis mellifera). Veterinary Clinics of North America: Food Animal Practice, v. 37, n. 3, p. 479–490, 1 nov. 2021.

LOCKE, B.; FORSGREN, E.; DE MIRANDA, J. R. Increased tolerance and resistance to virus infections: a possible factor in the survival of Varroa destructor-resistant honey bees (Apis mellifera). PloS one, v. 9, n. 6, 13 jun. 2014.

MANZANO SÁNCHEZ, L. et al. Presence, persistence and distribution of thymol in honeybees and beehive compartments by high resolution mass spectrometry. Environmental Advances, v. 5, p. 100085, 1 out. 2021.

MARTINHO, C. et al. Apicultura: revisão de literatura. Revista Lusófona de Ciência e Medicina Veterinária, v. 12, p. 1–17, 2022.

MIRANDA, R. C. DE. Apicultura: Uma Alternativa Para a Promoção Do Desenvolvimento Rural Sustentável. p. 11, 2016.

MONDET, F. et al. Honey bee survival mechanisms against the parasite Varroa destructor: a systematic review of phenotypic and genomic research efforts. International Journal for Parasitology, v. 50, n. 6–7, p. 433–447, 1 jun. 2020.

MORFIN, N.; ANGUIANO-BAEZ, R.; GUZMAN-NOVOA, E. Honey Bee (Apis mellifera) Immunity. Veterinary Clinics of North America: Food Animal Practice, v. 37, n. 3, p. 521–533, 1 nov. 2021.

NANETTI, A. et al. Effect of oxalic acid on Nosema ceranae infection. Research in Veterinary Science, v. 102, p. 167–172, 1 out. 2015.

NORAIN SAJID, Z. et al. Efficacy assessment of soft and hard acaricides against Varroa destructor mite infesting honey bee (Apis mellifera) colonies, through sugar roll method. Saudi Journal of Biological Sciences, v. 27, n. 1, p. 53–59, 1 jan. 2020.

NUNES-SILVA, C. I. DA S. K. P. A. B.; IMPERATRIZ-FONSECA, B. M. F. V. L. Guia ilustrado de Abelhas Polnizadoras do Brasil. [s.l: s.n.].

OLINTO, F. A. COMPORTAMENTO HIGIÊNICO E IDENTIFICAÇÃO DE PATÓGENOS EM COLMEIAS DE Apis mellifera L. AFRICANIZADAS NO SERTÃO PARAIBANO. Universidade Federal de Campina Grande, p. 60, 2014.

PAYNE, A. N.; WALSH, E. M.; RANGEL, J. Initial Exposure of Wax Foundation to Agrochemicals Causes Negligible Effects on the Growth and Winter Survival of Incipient Honey Bee (Apis mellifera) Colonies. Insects 2019, Vol. 10, Page 19, v. 10, n. 1, p. 19, 8 jan. 2019.

PORPORATO, M. et al. Varroa Control by Means of a Hyperthermic Device. Applied Sciences (Switzerland), v. 12, n. 16, p. 8138, 1 ago. 2022.

RAMOS-CUELLAR, A. K. et al. Genotype, but Not Climate, Affects the Resistance of Honey Bees (Apis mellifera) to Viral Infections and to the Mite Varroa destructor. Veterinary Sciences 2022, Vol. 9, Page 358, v. 9, n. 7, p. 358, 15 jul. 2022.

RAMSEY, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences of the United States of America, v. 116, n. 5, p. 1792–1801, 29 jan. 2019.

ROSENKRANZ, P.; AUMEIER, P.; ZIEGELMANN, B. Biology and control of Varroa destructor. Journal of Invertebrate Pathology, v. 103, n. SUPPL. 1, p. S96–S119, 1 jan. 2010.

SABOVÁ, L. et al. The adverse effects of synthetic acaricide tau-fluvalinate (tech.) on winter adult honey bees. Environmental Toxicology and Pharmacology, v. 92, p. 103861, 1 maio 2022.

TIWARI, T.; ZAYED, A. Practical Applications of Genomics in Managing Honey bee Health. Veterinary Clinics of North America: Food Animal Practice, v. 37, n. 3, p. 535–543, 1 nov. 2021.

TRAYNOR, K. S. et al. Varroa destructor: A Complex Parasite, Crippling Honey Bees Worldwide. Trends in Parasitology, v. 36, n. 7, p. 592–606, 1 jul. 2020.

ULGEZEN, Z. N.; VAN DOOREMALEN, C.; VAN LANGEVELDE, F. Understanding social resilience in honeybee colonies. Current Research in Insect Science, v. 1, p. 100021, 1 jan. 2021.

ULLAH, A. et al. Viral impacts on honey bee populations: A review. Saudi Journal of Biological Sciences, v. 28, n. 1, p. 523–530, 1 jan. 2021.

UNDERWOOD, R. M.; CURRIE, R. W. Effect of Concentration and Exposure Time on Treatment Efficacy Against Varroa Mites (Acari: Varroidae) During Indoor Winter Fumigation of Honey Bees (Hymenoptera: Apidae) with Formic Acid. Journal of Economic Entomology, v. 98, n. 6, p. 1802–1809, 1 dez. 2005.

VU, P. D. et al. Voltage-gated chloride channel blocker DIDS as an acaricide for Varroa mites. Pesticide Biochemistry and Physiology, v. 167, p. 104603, 1 jul. 2020.

WOODFORD, L. ; et al. Quantitative and Qualitative Changes in the Deformed Wing Virus Population in Honey Bees Associated with the Introduction or Removal of Varroa destructor. Viruses 2022, Vol. 14, Page 1597, v. 14, n. 8, p. 1597, 22 jul. 2022.

WU, X. et al. Sublethal fluvalinate negatively affect the development and flight capacity of honeybee (Apis mellifera L.) workers. Environmental Research, v. 203, p. 111836, 1 jan. 2022.

WU, X. et al. The adverse impact on lifespan, immunity, and forage behavior of worker bees (Apis mellifera Linnaeus 1758) after exposure to flumethrin. Science of The Total Environment, v. 858, p. 160146, 1 fev. 2023.

YANG, X.; COX-FOSTER, D. L. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences of the United States of America, v. 102, n. 21, p. 7470–7475, 24 maio 2005.

ZHU, Y. C.; YAO, J.; WANG, Y. Varroa mite and deformed wing virus infestations interactively make honey bees (Apis mellifera) more susceptible to insecticides. Environmental Pollution, v. 292, p. 118212, 1 jan. 2022.

ZULHENDRI, F. et al. Propolis of stingless bees for the development of novel functional food and nutraceutical ingredients: A systematic scoping review of the experimental evidence. Journal of Functional Foods, v. 88, p. 104902, 1 jan. 2022.

 

Referências

ANDREO-MARTÍNEZ, P. et al. Science production of pesticide residues in honey research: A descriptive bibliometric study. Environmental Toxicology and Pharmacology, v. 79, p. 103413, 1 out. 2020.

BORBA, R. S. et al. Phenomic analysis of the honey bee pathogen-web and its dynamics on colony productivity, health and social immunity behaviors. PLOS ONE, v. 17, n. 1, p. e0263273, 1 jan. 2022.

DAISLEY, B. A. et al. Missing Microbes in Bees: How Systematic Depletion of Key Symbionts Erodes Immunity. Trends in Microbiology, v. 28, n. 12, p. 1010–1021, 1 dez. 2020.

DE GRAAF, D. C. et al. Heritability estimates of the novel trait ‘suppressed in ovo virus infection’ in honey bees (Apis mellifera). Scientific Reports 2020 10:1, v. 10, n. 1, p. 1–10, 31 ago. 2020.

DE, U.; FFCLRP, P.; ENTOMOLOGIA, A. O. E. M. Universidade de são paulo ffclrp – departamento de biologia programa de pós-graduaçao em entomologia “. 2009.

EL YAAGOUBI, M. et al. A review on Moroccan Thymus species: Traditional uses, essential oils chemical composition and biological effects. Journal of Ethnopharmacology, v. 278, p. 114205, 5 out. 2021.

ESCOBAR, A. et al. Thymol bioactivity: A review focusing on practical applications. Arabian Journal of Chemistry, v. 13, n. 12, p. 9243–9269, 1 dez. 2020.

GATES, M. C.; EARL, L.; ENTICOTT, G. Factors influencing the performance of voluntary farmer disease reporting in passive surveillance systems: A scoping review. Preventive Veterinary Medicine, v. 196, p. 105487, 1 nov. 2021.

HOPKINS, D. I.; KELLER, J. J. Honey Bee Diagnostics. Veterinary Clinics of North America: Food Animal Practice, v. 37, n. 3, p. 427–450, 1 nov. 2021.

KARIMI, P.; MALEKIFARD, F.; TAVASSOLI, M. Medicinal plant essential oils as promising Anti-Varroa agents: Oxidative/nitrosative screens. South African Journal of Botany, v. 148, p. 344–351, 1 ago. 2022.

KHAN, K. A. et al. Instrumental insemination: A nontraditional technique to produce superior quality honey bee (Apis mellifera) queens. Journal of King Saud University - Science, v. 34, n. 5, p. 102077, 1 jul. 2022.

KYLE, B.; LEE, K.; PERNAL, S. F. Epidemiology and Biosecurity for Veterinarians Working with Honey bees (Apis mellifera). Veterinary Clinics of North America: Food Animal Practice, v. 37, n. 3, p. 479–490, 1 nov. 2021.

LOCKE, B.; FORSGREN, E.; DE MIRANDA, J. R. Increased tolerance and resistance to virus infections: a possible factor in the survival of Varroa destructor-resistant honey bees (Apis mellifera). PloS one, v. 9, n. 6, 13 jun. 2014.

MANZANO SÁNCHEZ, L. et al. Presence, persistence and distribution of thymol in honeybees and beehive compartments by high resolution mass spectrometry. Environmental Advances, v. 5, p. 100085, 1 out. 2021.

MARTINHO, C. et al. Apicultura: revisão de literatura. Revista Lusófona de Ciência e Medicina Veterinária, v. 12, p. 1–17, 2022.

MIRANDA, R. C. DE. Apicultura: Uma Alternativa Para a Promoção Do Desenvolvimento Rural Sustentável. p. 11, 2016.

MONDET, F. et al. Honey bee survival mechanisms against the parasite Varroa destructor: a systematic review of phenotypic and genomic research efforts. International Journal for Parasitology, v. 50, n. 6–7, p. 433–447, 1 jun. 2020.

MORFIN, N.; ANGUIANO-BAEZ, R.; GUZMAN-NOVOA, E. Honey Bee (Apis mellifera) Immunity. Veterinary Clinics of North America: Food Animal Practice, v. 37, n. 3, p. 521–533, 1 nov. 2021.

NANETTI, A. et al. Effect of oxalic acid on Nosema ceranae infection. Research in Veterinary Science, v. 102, p. 167–172, 1 out. 2015.

NORAIN SAJID, Z. et al. Efficacy assessment of soft and hard acaricides against Varroa destructor mite infesting honey bee (Apis mellifera) colonies, through sugar roll method. Saudi Journal of Biological Sciences, v. 27, n. 1, p. 53–59, 1 jan. 2020.

NUNES-SILVA, C. I. DA S. K. P. A. B.; IMPERATRIZ-FONSECA, B. M. F. V. L. Guia ilustrado de Abelhas Polnizadoras do Brasil. [s.l: s.n.].

OLINTO, F. A. COMPORTAMENTO HIGIÊNICO E IDENTIFICAÇÃO DE PATÓGENOS EM COLMEIAS DE Apis mellifera L. AFRICANIZADAS NO SERTÃO PARAIBANO. Universidade Federal de Campina Grande, p. 60, 2014.

PAYNE, A. N.; WALSH, E. M.; RANGEL, J. Initial Exposure of Wax Foundation to Agrochemicals Causes Negligible Effects on the Growth and Winter Survival of Incipient Honey Bee (Apis mellifera) Colonies. Insects 2019, Vol. 10, Page 19, v. 10, n. 1, p. 19, 8 jan. 2019.

PORPORATO, M. et al. Varroa Control by Means of a Hyperthermic Device. Applied Sciences (Switzerland), v. 12, n. 16, p. 8138, 1 ago. 2022.

RAMOS-CUELLAR, A. K. et al. Genotype, but Not Climate, Affects the Resistance of Honey Bees (Apis mellifera) to Viral Infections and to the Mite Varroa destructor. Veterinary Sciences 2022, Vol. 9, Page 358, v. 9, n. 7, p. 358, 15 jul. 2022.

RAMSEY, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences of the United States of America, v. 116, n. 5, p. 1792–1801, 29 jan. 2019.

ROSENKRANZ, P.; AUMEIER, P.; ZIEGELMANN, B. Biology and control of Varroa destructor. Journal of Invertebrate Pathology, v. 103, n. SUPPL. 1, p. S96–S119, 1 jan. 2010.

SABOVÁ, L. et al. The adverse effects of synthetic acaricide tau-fluvalinate (tech.) on winter adult honey bees. Environmental Toxicology and Pharmacology, v. 92, p. 103861, 1 maio 2022.

TIWARI, T.; ZAYED, A. Practical Applications of Genomics in Managing Honey bee Health. Veterinary Clinics of North America: Food Animal Practice, v. 37, n. 3, p. 535–543, 1 nov. 2021.

TRAYNOR, K. S. et al. Varroa destructor: A Complex Parasite, Crippling Honey Bees Worldwide. Trends in Parasitology, v. 36, n. 7, p. 592–606, 1 jul. 2020.

ULGEZEN, Z. N.; VAN DOOREMALEN, C.; VAN LANGEVELDE, F. Understanding social resilience in honeybee colonies. Current Research in Insect Science, v. 1, p. 100021, 1 jan. 2021.

ULLAH, A. et al. Viral impacts on honey bee populations: A review. Saudi Journal of Biological Sciences, v. 28, n. 1, p. 523–530, 1 jan. 2021.

UNDERWOOD, R. M.; CURRIE, R. W. Effect of Concentration and Exposure Time on Treatment Efficacy Against Varroa Mites (Acari: Varroidae) During Indoor Winter Fumigation of Honey Bees (Hymenoptera: Apidae) with Formic Acid. Journal of Economic Entomology, v. 98, n. 6, p. 1802–1809, 1 dez. 2005.

VU, P. D. et al. Voltage-gated chloride channel blocker DIDS as an acaricide for Varroa mites. Pesticide Biochemistry and Physiology, v. 167, p. 104603, 1 jul. 2020.

WOODFORD, L. ; et al. Quantitative and Qualitative Changes in the Deformed Wing Virus Population in Honey Bees Associated with the Introduction or Removal of Varroa destructor. Viruses 2022, Vol. 14, Page 1597, v. 14, n. 8, p. 1597, 22 jul. 2022.

WU, X. et al. Sublethal fluvalinate negatively affect the development and flight capacity of honeybee (Apis mellifera L.) workers. Environmental Research, v. 203, p. 111836, 1 jan. 2022.

WU, X. et al. The adverse impact on lifespan, immunity, and forage behavior of worker bees (Apis mellifera Linnaeus 1758) after exposure to flumethrin. Science of The Total Environment, v. 858, p. 160146, 1 fev. 2023.

YANG, X.; COX-FOSTER, D. L. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences of the United States of America, v. 102, n. 21, p. 7470–7475, 24 maio 2005.

ZHU, Y. C.; YAO, J.; WANG, Y. Varroa mite and deformed wing virus infestations interactively make honey bees (Apis mellifera) more susceptible to insecticides. Environmental Pollution, v. 292, p. 118212, 1 jan. 2022.

ZULHENDRI, F. et al. Propolis of stingless bees for the development of novel functional food and nutraceutical ingredients: A systematic scoping review of the experimental evidence. Journal of Functional Foods, v. 88, p. 104902, 1 jan. 2022.

Downloads

Publicado

2023-02-04

Como Citar

Souza, A. C. P. de, Almeida, F. F. F. de, Silva, R. A. da, Medeiros, A. C. de, Oliveira Neto, J. N. de, Gurjão, T. A., Medeiros, G. R., Pereira, D. S., Maracaja, P. B., & Gomes, N. B. M. R. (2023). O Varroa destructor e suas implicações nas abelhas Apis melliferas: Varroa destructor and its implications for Apis melliferas bees. Revista Coopex., 14(1), 209–250. https://doi.org/10.61223/coopex.v14i1.116

Edição

Seção

Artigos

Categorias